Sea	t No.		TTECHN	Enrolment No			
					TION – SUMME	ER 2019	
Subject Code:140001 Date:09/05/20							
Subject Name: Mathematics-IV							
		2:30 PM TO 0	5:30 PM		Tot	al Marks: 70	
Instructions: 1. Attempt all questions.							
	2	Make suitable a Figures to the r	ssumptions wher				
Q.1	(a)	Find all roots of	$\sqrt[3]{8i}$.				07
	(b)	1) Find real and imaginary part of $f(z) = z^2 + 4z$. Also, calculate the value					
		of f at $z = 1 + i$.					
		•					
		2) Show that $f(z) = \frac{\operatorname{Im}(z)}{ z }; z \neq 0$					
		ζ , $\zeta = 0$					
		is not continuous at the origin.					
Q.2	(a)) Find the image of the region $ z < 1$ under the transformation $w = 2z - i$.					
		Sketch the region and its image.					
	(b)	Show that $u(x, y) = 2x - x^3 + 3xy^2$ is harmonic in some domain D and find a 07					
		harmonic conjugate of $u(x, y)$.					
		harmonic conjugate of $u(x, y)$.					
	(b)	If $f(z)$ is an analytic function of z, show that 07					
		$\left(\frac{\partial}{\partial z} f(z) \right)^2 + \left(\frac{\partial}{\partial z} f(z) \right)^2 = f'(z) ^2$					
03	(a)	Evaluate $\int_{0}^{2+i} z^2 dz$ along the line $y = \frac{x}{2}$ Evaluate:					
Q.3	(a)	Evaluate $\int_0^\infty z^2 dz$ along the line $y = \frac{x}{2}$					
	(D)	Evaluate: 07 1 $\oint \frac{z}{1}$ (over the contour c, where c is the circle $ z = 1$					
		1. $\oint \frac{z}{z-z}$ (c), over the contour <i>c</i> , where <i>c</i> is the circle $ z = 1$.					
		2. $\oint_{(1-z)^3} dz$, counterclockwise over C, where C: $ z = 2$					
		3. $\oint \frac{e^z}{(z-1)(z-3)} dz$, counterclockwise over C, where C: $ z = 2$					
		OR					
Q.3	(a)	Determine the Laurent series expansion of $f(z) = \frac{1}{(z+1)(z+3)}$ valid for 07					
		a) $ z < 1$ b) $1 < z < 3$					
	(b)	Using Newton's divided difference formula, compute $f(10.5)$ from the 07 following data:					
		following data: 10 11 13 17					
		$f(\mathbf{x})$:	2.3026	2.3979	2.5649	2.8332	
Q.4	(a)			$3 + 4r^2 - 1 - 1$	II		07
ייצ	(u)	Find a real root of the equation $x^3 + 4x^2 - 1 = 0$, lies between 0 and 1 by using 07 bisection method correct to decimal places.					
	(b)						
		Evaluate $\int_{0}^{3} \frac{dx}{(1+x)}$ with n=6 by using Simpson's 3/8 rule and hence calculate 07					
		ln 2.					

1

Download all NOTES and PAPERS at StudentSuvidha.com

OR

- (a) Solve the following system of equation using partial pivoting by Gauss 07 0.4 Elimination method.
 - $8x_2 + 2x_3 = -7$ $3x_1 + 5x_2 + 2x_3 = 8$ $6x_1 + 2x_2 + 8x_3 = 26$
 - (b) Solve the following system of equations by using Gauss-Seidel method. 07 10x + y + z = 6; x + 10y + z = 6; x + y + 10z = 6
- **Q.5** (a) Using the power method, find the largest eigenvalue of the matrix 07 $A = \begin{vmatrix} -1 & 2 & -1 \\ 0 & -1 & 2 \end{vmatrix}$
 - (b) Apply Runge-Kutta fourth order method to find an approximation value of y 07 when x=0.1 in step of 0.1 if $\frac{dy}{dx} = x + y^2$, y(0) = 1

OR

Evaluate the integral $\int_{0}^{1} \frac{dx}{(1+x)}$, by Gauss three point quadrature formula. Q.5 **(a)** 07

Solve the differential equation $\frac{dy}{dx} + xy = 0$; y(0) = 1, from x = 0 to x = 0.25 using 07 **(b)** Euler's method taking step size 0.05.